Graphene-Oxide-Sheet-Induced Gelation of Cellulose and Promoted Mechanical Properties of Composite Aerogels
By taking advantage of cellulose, graphene oxide sheets (GOSs), and the process of freeze-drying, we propose a simple and effective method to prepare green cellulose aerogels with significant mechanical improvements. The addition of GOSs could accelerate the gelation of cellulose solution, which was confirmed by differential scanning calorimetry and rheology. Detailed investigations including dynamic light scattering and ultraviolet spectroscopy revealed the existence of interaction between GOSs and cellulose chains, which might be responsible for the promotion of the gelation process. With the incorporation of only 0.1 wt % GOSs, the compression strength and Young’s modulus of the composite aerogels were dramatically improved by about 30 and 90% compared to with those of pristine cellulose aerogels, respectively. This method is believed to provide possibilities to combine the extraordinary performances of GOSs with the multifunctional properties of environmentally friendly cellulose-based aerogels, thus holding great potential for biological applications in the future.
<<全文链接>>